


Sequential imperfect information games 
•  Players face uncertainty about the state of the world 
•  Most real-world games are like this 

–  A robot facing adversaries in an uncertain, stochastic environment 
–  Almost any card game in which the other players’ cards are hidden 
–  Almost any economic situation in which the other participants possess 

private information (e.g. valuations, quality information)  
•  Negotiation 
•  Multi-stage auctions (e.g., English) 
•  Sequential auctions of multiple items 

–  … 
•  This class of games presents several challenges for AI 

–  Imperfect information 
–  Risk assessment and management 
–  Speculation and counter-speculation 

•  Techniques for solving sequential complete-information games (like chess) 
don’t apply 

•  Our techniques are domain-independent 



Poker 
•  Recognized challenge problem in AI 

–  Hidden information (other players’ cards) 
–  Uncertainty about future events 
–  Deceptive strategies needed in a good player 

•  Very large game trees 
•  Texas Hold’em: most popular variant 

On NBC: 



Finding equilibria 
•  In 2-person 0-sum games,  

–  Nash equilibria are minimax equilibria => no equilibrium selection problem 
–  If opponent plays a non-equilibrium strategy, that only helps me 

•  Any finite sequential game (satisfying perfect recall) can be 
converted into a matrix game 
–  Exponential blowup in #strategies (even in reduced normal form) 

•  Sequence form: More compact representation based on sequences 
of moves rather than pure strategies [Romanovskii 62, Koller & 
Megiddo 92, von Stengel 96] 
–  2-person 0-sum games with perfect recall can be solved in time polynomial 

in size of game tree using LP 
–  Cannot solve Rhode Island Hold’em (3.1 billion nodes) or Texas Hold’em 

(1018 nodes) 



Our approach [Gilpin & Sandholm EC’06, JACM’07] 
Now used by all competitive Texas Hold’em programs 
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Outline 
•  Automated abstraction 

–  Lossless 
–  Lossy 

•  New equilibrium-finding algorithms 
•  Stochastic games with >2 players, e.g., poker tournaments 
•  Current & future research 



Lossless abstraction 
[Gilpin & Sandholm EC’06, JACM’07] 



Information filters 
•  Observation: We can make games smaller by 

filtering the information a player receives 

•  Instead of observing a specific signal exactly, a 
player instead observes a filtered set of signals 
– E.g. receiving signal {A♠,A♣,A♥,A♦} instead of A♥ 



Signal tree 

•  Each edge corresponds to the revelation of some 
signal by nature to at least one player 

•  Our abstraction algorithms operate on it 
– Don’t load full game into memory 



Isomorphic relation 

•  Captures the notion of strategic symmetry between nodes 
•  Defined recursively: 

–  Two leaves in signal tree are isomorphic if for each action 
history in the game, the payoff vectors (one payoff per player) 
are the same 

–  Two internal nodes in signal tree are isomorphic if they are 
siblings and there is a bijection between their children such that 
only ordered game isomorphic nodes are matched 

•  We compute this relationship for all nodes using a DP 
plus custom perfect matching in a bipartite graph 
–  Answer is stored 



Abstraction transformation 

•  Merges two isomorphic nodes 

•  Theorem.  If a strategy profile is a Nash equilibrium 
in the abstracted (smaller) game, then its 
interpretation in the original game is a Nash 
equilibrium 

•  Assumptions 
–  Observable player actions 
–  Players’ utility functions rank the signals in the same order 









GameShrink algorithm 

•  Bottom-up pass: Run DP to mark isomorphic pairs of 
nodes in signal tree 

•  Top-down pass: Starting from top of signal tree, perform 
the transformation where applicable 

•  Theorem.  Conducts all these transformations 
–  Õ(n2), where n is #nodes in signal tree 
–  Usually highly sublinear in game tree size 

•  One approximation algorithm: instead of requiring perfect 
matching, require a matching with a penalty below 
threshold 



Algorithmic techniques for making 
GameShrink faster 

•  Union-Find data structure for efficient representation of 
the information filter (unioning finer signals into coarser 
signals) 
–  Linear memory and almost linear time 

•  Eliminate some perfect matching computations using 
easy-to-check necessary conditions 
–  Compact histogram databases for storing win/loss frequencies to 

speed up the checks 



Solving Rhode Island Hold’em poker 

•  AI challenge problem [Shi & Littman 01] 
–  3.1 billion nodes in game tree 

•  Without abstraction, LP has 91,224,226 rows and 
columns => unsolvable 

•  GameShrink runs in one second 
•  After that, LP has 1,237,238 rows and columns 
•  Solved the LP 

–  CPLEX barrier method took 8 days & 25 GB RAM 
•  Exact Nash equilibrium 
•  Largest incomplete-info (poker) game solved                  

to date by over 4 orders of magnitude 



Lossy abstraction 



Texas Hold’em poker 

•  2-player Limit Texas 
Hold’em has ~1018 
leaves in game tree 

•  Losslessly abstracted 
game too big to solve 
=> abstract more     
=> lossy 

Nature deals 2 cards to each player 

Nature deals 3 shared cards 

Nature deals 1 shared card 

Nature deals 1 shared card 

Round of betting 
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GS1 [Gilpin & Sandholm AAAI’06] 

•  Our first program for 2-person Limit Texas Hold’em 
•  1/2005 - 1/2006 
•  First Texas Hold’em program to use automated 

abstraction 
–  Lossy version of Gameshrink 



GS1 

•  We split the 4 betting rounds into two phases 
– Phase I (first 2 rounds) solved offline using 

approximate version of GameShrink followed by LP 
•  Assuming rollout 

– Phase II (last 2 rounds): 
•  abstractions computed offline 

–  betting history doesn’t matter & suit isomorphisms 
•  real-time equilibrium computation using anytime LP 

–  updated hand probabilities from Phase I equilibrium (using 
betting histories and community card history):  

–  si is player i’s strategy, h is an information set 



Some additional techniques used 

•  Precompute several databases 
•  Conditional choice of primal vs. dual simplex 

for real-time equilibrium computation 
– Achieve anytime capability for the player that is us 

•  Dealing with running off the equilibrium path 



GS1 results 

•  Sparbot: Game-theory-based player, manual abstraction 
•  Vexbot: Opponent modeling, miximax search with statistical 

sampling 
•  GS1 performs well, despite using very little domain-knowledge 

and no adaptive techniques 
–  No statistical significance 



GS2 [Gilpin & Sandholm AAMAS’07] 
•  2/2006-7/2006 
•  Original version of GameShrink is “greedy” when used 

as an approximation algorithm => lopsided abstractions  
•  GS2 instead finds abstraction via clustering & IP 

–  Round by round starting from round 1 
•  Other ideas in GS2: 

–   Overlapping phases so Phase I would be less myopic 
•  Phase I = round 1, 2, and 3;    Phase II = rounds 3 and 4 

–  Instead of assuming rollout at leaves of Phase I (as was done 
in SparBot and GS1), use statistics to get a more accurate 
estimate of how play will go 

•  Statistics from 100,000’s hands of SparBot in self-play 



GS2 

2/2006 – 7/2006 
[Gilpin & Sandholm AAMAS’07] 



Optimized approximate abstractions 
•  Original version of GameShrink is “greedy” when used as an 

approximation algorithm => lopsided abstractions  

•  GS2 instead finds an abstraction via clustering & IP 

•  For round 1 in signal tree, use 1D k-means clustering 
–  Similarity metric is win probability (ties count as half a win) 

•  For each round 2..3 of signal tree: 
–  For each group i of hands (children of a parent at round – 1): 

•  use 1D k-means clustering to split group i into ki abstract “states” 
•  for each value of ki, compute expected error (considering hand probs) 

–  IP decides how many children different parents (from round – 1) may have: 
Decide ki’s to minimize total expected error, subject to ∑i ki ≤ Kround  

•  Kround is set based on acceptable size of abstracted game 
•  Solving this IP is fast in practice 



Phase I (first three rounds) 
•  Optimized abstraction  

–  Round 1 
•  There are 1,326 hands, of which 169 are strategically different 
•  We allowed 15 abstract states 

–  Round 2 
•  There are 25,989,600 distinct possible hands 

–  GameShrink (in lossless mode for Phase I) determined there are ~106 strategically 
different hands 

•  Allowed 225 abstract states 
–  Round 3 

•  There are 1,221,511,200 distinct possible hands 
•  Allowed 900 abstract states 

•  Optimizing the approximate abstraction took 3 days on 4 CPUs 

•  LP took 7 days and 80 GB using CPLEX’s barrier method 



Mitigating effect of round-based abstraction 
(i.e., having 2 phases) 

•  For leaves of Phase I, GS1 & SparBot assumed rollout 
•  Can do better by estimating the actions from later in 

the game (betting) using statistics 
•  For each possible hand strength and in each possible 

betting situation, we stored the probability of each 
possible action 
–  Mine history of how betting has gone in later rounds from 

100,000’s of hands that SparBot played 
–  E.g. of betting in 4th round  

•  Player 1 has bet.  Player 2’s turn 



Phase II (rounds 3 and 4) 

•  Abstraction computed using the same optimized 
abstraction algorithm as in Phase I 

•  Equilibrium solved in real time (as in GS1) 
– Beliefs for the beginning of Phase II determined using 

Bayes rule based on observations and the computed 
equilibrium strategies from Phase I 



Precompute several databases 

•  db5: possible wins and losses (for a single player) for every 
combination of two hole cards and three community cards 
(25,989,600 entries) 
–  Used by GameShrink for quickly comparing the similarity of two hands 

•  db223: possible wins and losses (for both players) for every 
combination of pairs of two hole cards and three community 
cards based on a roll-out of the remaining cards (14,047,378,800 
entries) 
–  Used for computing payoffs of the Phase I game to speed up the LP 

creation 
•  handval: concise encoding of a 7-card hand rank used for fast 

comparisons of hands (133,784,560 entries) 
–  Used in several places, including in the construction of db5 and db223 

•  Colexicographical ordering used to compute indices into the 
databases allowing for very fast lookups 



GS2 experiments 
Opponent Series won by 

GS2 
Win rate 

(small bets per hand) 
GS1 38 of 50  

p=.00031 
+0.031 

Sparbot 28 of 50  
p=.48 

+0.0043 

Vexbot 32 of 50  
p=.065 

-0.0062 



GS3 



Entire game solved holistically 

•  We no longer break game into phases 
– Because our new equilibrium-finding algorithms can 

solve games of the size that stem from reasonably 
fine-grained abstractions of the entire game 

•  => better strategies & no need for real-time 
computation 



Potential-aware automated abstraction 

•  All prior abstraction algorithms (including ours) 
had myopic probability of winning as the 
similarity metric 
– Does not address potential, e.g., hands like flush 

draws where although the probability of winning is 
small, the payoff could be high 

•  Potential not only positive or negative, but also 
“multidimensional” 

•  GS3’s abstraction algorithm takes potential into 
account… 



•  Idea: similarity metric between hands at round 
R should be based on the vector of probabilities 
of transitions to abstracted states at round R+1 
– E.g., L1 norm 

•  In the last round, the similarity metric is simply 
probability of winning (assuming rollout) 

•   This enables a bottom 



Bottom-up pass to determine 
abstraction for round 1 

•  Clustering using L1 norm 
–  Predetermined number of clusters, depending on size of abstraction we are shooting for 

•  In the last (4th) round, there is no more potential => we use probability of winning 
(assuming rollout) as similarity metric 

Round r 

Round r-1 

.3 .2 0 .5 



Determining abstraction for round 2 

•  For each 1st-round bucket i: 
–  Make a bottom-up pass to determine 3rd-round buckets, 

considering only hands compatible with i 
–  For ki  {1, 2, …, max} 

•  Cluster the 2nd-round hands into ki clusters 
–  based on each hand’s histogram over 3rd-round buckets 

•  IP to decide how many children each 1st-round bucket 
may have, subject to ∑i ki ≤ K2 
–  Error metric for each bucket is the sum of L2 distances of the 

hands from the bucket’s centroid 
–  Total error to minimize is the sum of the buckets’ errors 

•  weighted by the probability of reaching the bucket 



Determining abstraction for round 3 

•  Done analogously to how we did round 2 



Determining abstraction for round 4 

•  Done analogously, except that now there is no 
potential left, so clustering is done based on 
probability of winning (assuming rollout) 

•  Now we have finished the abstraction! 



Potential-aware vs win-probability-based abstraction 
•  Both use clustering and IP 
•  Experiment conducted on Heads-Up Rhode Island Hold’em 

–  Abstracted game solved exactly 

13 buckets in first round is lossless Potential-aware becomes lossless, 
win-probability-based is as good as it gets, never lossless 
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[Gilpin & Sandholm AAAI-08] 



Potential-aware vs win-probability-based abstraction 

13 buckets in first round is lossless 

Potential-aware becomes lossless, 
win-probability-based is as good as it gets, never lossless 

[Gilpin & Sandholm AAAI-08 & new] 



Equilibrium-finding algorithms 

Solving the (abstracted) game 

Now we move from discussing general-sum n-player 
games to discussing 2-player 0-sum games 



Scalability of (near-)equilibrium finding in 2-person 0-sum games 
Manual approaches can only solve games with a handful of nodes 
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(Un)scalability of LP solvers 

•  Rhode Island Hold’em LP 
–  91,000,000 rows and columns 
–  After GameShrink,1,200,000 rows and columns, and 

50,000,000 non-zeros 
–  CPLEX’s barrier method uses 25 GB RAM and 8 days 

•  Texas Hold’em poker much larger 
–  => would need to use extremely coarse abstraction 

•  Instead of LP, can we solve the equilibrium-finding 
problem in some other way? 



Excessive gap technique (EGT) 

•  LP solvers only scale to ~107 nodes.  Can we do better than use LP? 

•  Usually, gradient-based algorithms have poor convergence, but… 

•  Theorem [Nesterov 05].  There is a gradient-based algorithm (for a 
class of minmax problems) that finds an ε-equilibrium in O(1/ ε) 
iterations 

•  In general, work per iteration is as hard as solving the original 
problem, but…  

•  Can make each iteration faster by considering problem structure: 

•  Theorem [Hoda et al. 06].  In sequential games, each iteration can 
be solved in time linear in the size of the game tree 



Scalable EGT [Gilpin, Hoda, Peña, Sandholm WINE’07] 
Memory saving in poker & many other games 

•  Main space bottleneck is storing the game’s payoff matrix A 
•  Definition. Kronecker product 

•  In Rhode Island Hold’em:  

•  Using independence of card deals and betting options, can represent this as 
 A1 = F1  B1  A2 = F2  B2  A3 = F3  B3 + S  W 

•  Fr corresponds to sequences of moves in round r that end in a fold 
•  S corresponds to sequences of moves in round 3 that end in a showdown 
•  Br encodes card buckets in round r 
•  W encodes win/loss/draw probabilities of the buckets 



Memory usage 

Instance CPLEX 
barrier 

CPLEX 
simplex 

Our method 

Losslessly 
abstracted 
Rhode 
Island 
Hold’em 

25.2 GB >3.45 GB 0.15 GB 

Lossily 
abstracted 
Texas 
Hold’em 

>458 GB >458 GB 2.49 GB 



Memory usage 

Instance CPLEX 
barrier 

CPLEX 
simplex 

Our method 

10k 0.082 GB >0.051 GB 0.012 GB 

160k 2.25 GB >0.664 GB 0.035 GB 
Losslessly 
abstracted 
RI Hold’em 

25.2 GB >3.45 GB 0.15 GB 

Lossily 
abstracted 
TX Hold’em 

>458 GB >458 GB 2.49 GB 



Scalable EGT [Gilpin, Hoda, Peña, Sandholm WINE’07]  
Speed 

•  Fewer iterations 
–  With Euclidean prox fn, gap was reduced by an order of 

magnitude more (at given time allocation) compared to 
entropy-based prox fn 

–  Heuristics 
•  Less conservative shrinking of 1 and 2 

–   Sometimes need to reduce (halve) t 
•  Balancing 1 and 2 periodically  

–  Often allows reduction in the values  
•  Gap was reduced by an order of magnitude (for given time allocation) 

•  Faster iterations 
–  Parallelization in each of the 3 matrix-vector products in 

each iteration => near-linear speedup 



Iterated smoothing [Gilpin, Peña & Sandholm AAAI-08] 

•  Input: Game and εtarget 
•  Initialize strategies x and y arbitrarily 
•  ε   εtarget 

•  repeat 
•  ε  gap(x, y) / e 
•  (x, y)  SmoothedGradientDescent(f, ε, x, y) 
•  until gap(x, y) < εtarget 

O(1/ε)    O(log(1/ε)) 



•  Computed abstraction with 
–  20 buckets in round 1 
–  800 buckets in round 2  
–  4,800 buckets in round 3  
–  28,800 buckets in round 4 

•  Our version of excessive gap technique used 30 GB RAM 
–  (Simply representing as an LP would require 32 TB) 
–  Outputs new, improved solution every 2.5 days 
–  4  1.65GHz CPUs: 6 months to gap 0.028 small bets per hand  



Results (for GS4) 

•  AAAI-08 Computer Poker Competition 
– GS4 won the Limit Texas Hold’em bankroll 

category 
•  Played 4-4 in the pairwise comparisons. 4th of 9 in 

elimination category 

– Tartanian did the best in terms of bankroll in No-
Limit Texas Hold’em 

•  3rd out of 4 in elimination category 



Comparison to prior poker AI 
•  Rule-based 

–  Limited success in even small poker games 
•  Simulation/Learning 

–  Do not take multi-agent aspect into account 

•  Game-theoretic 
–  Small games 
–  Manual abstraction + LP for equilibrium finding [Billings et 

al. IJCAI-03] 
–  Ours 

•  Automated abstraction 
•  Custom solver for finding Nash equilibrium 
•  Domain independent 





>2 players 

(Actually, our abstraction algorithms, 
presented earlier in this talk, apply to 

>2 players) 



Games with >2 players  

•  Matrix games: 
–  2-player zero-sum: solvable in polytime 
– >2 players zero-sum: PPAD-complete [Chen & 

Deng, 2006] 
– No previously known algorithms scale beyond tiny 

games with >2 players 
•  Stochastic games (undiscounted): 

–  2-player zero-sum: Nash equilibria exist 
–  3-player zero-sum: Existence of Nash equilibria still 

open 



Poker tournaments 

•  Players buy in with cash (e.g., $10) and are given chips (e.g., 
1500) that have no monetary value 

•  Lose all you chips => eliminated from tournament 
•  Payoffs depend on finishing order (e.g., $50 for 1st, $30 for 2nd, 

$20 for 3rd) 
•  Computational issues: 

–  >2 players 
–  Tournaments are stochastic games (potentially infinite 

duration): each game state is a vector of stack sizes (and also 
encodes who has the button) 



Jam/fold strategies 

•  Jam/fold strategy: in the first betting round, go all-in or fold 
•  In 2-player poker tournaments, when blinds become high 

compared to stacks, provably near-optimal to play jam/fold 
strategies [Miltersen & Sørensen 2007] 

•  Solving a 3-player tournament [Ganzfried & Sandholm AAMAS-08] 
–  Compute an approximate equilibrium in jam/fold strategies 
–  Strategy spaces 2169, 2  2169, 3  2169 
–  Algorithm combines  

•  an extension of fictitious play to imperfect-information games  
•  with a variant of value iteration 

–  Our solution challenges Independent Chip Model (ICM) accepted by 
poker community 

–  Unlike in 2-player case, tournament and cash game strategies differ 
substantially 



Our first algorithm 

•  Initialize payoffs for all game states using heuristic from poker 
community (ICM) 

•  Repeat until “outer loop” converges 
–  “Inner loop”: 

•  Assuming current payoffs, compute an approximate equilibrium at each state using 
fictitious play 

•  Can be done efficiently by iterating over each player’s information sets 

–  “Outer loop”: 
•  Update the values with the values obtained by new strategy profile 
•  Similar to value iteration in MDPs 



Ex-post check 

•  Our algorithm is not guaranteed to converge, and can 
converge to a non-equilibrium (we constructed example) 

•  We developed an ex-post check to verify how much any 
player could gain by deviating [Ganzfried & Sandholm IJCAI-09] 
–  Constructs an undiscounted MDP from the strategy profile, 

and solves it using variant of policy iteration 
–  Showed that no player could gain more than 0.1% of highest 

possible payoff by deviating from our profile 



New algorithms [Ganzfried & Sandholm IJCAI-09] 

•  Developed 3 new algorithms for solving multiplayer 
stochastic games of imperfect information 
–  Unlike first algorithm, if these algorithms converge, they 

converge to an equilibrium 
–  First known algorithms with this guarantee 
–  They also perform competitively with the first algorithm 

•  The algorithms combine fictitious play variant from 
first algorithm with techniques for solving 
undiscounted MDPs (i.e., maximizing expected total 
reward) 



Best one of the new algorithms 
•  Initialize payoffs using ICM as before 
•  Repeat until “outer loop” converges 

–  “Inner loop”: 
•  Assuming current payoffs, compute an approximate equilibrium at each state 

using our variant of fictitious play as before 
–  “Outer loop”: update the values with the values obtained by new strategy profile 

St using a modified version of policy iteration: 
•  Create the MDP M induced by others’ strategies in St (and initialize using 

own strategy in St): 
•  Run modified policy iteration on M 

–  In the matrix inversion step, always choose the minimal solution 
–  If there are multiple optimal actions at a state, prefer the action chosen last period if possible 



Second new algorithm 

•  Interchanging roles of fictitious play and policy iteration: 
–  Policy iteration used as inner loop to compute best response 
–  Fictitious play used as outer loop to combine BR with old strategy 

•  Initialize strategies using ICM 
•  Inner loop: 

–  Create MDP M induced from strategy profile 
–  Solve M using policy iteration variant (from previous slide) 

•  Outer loop: 
–  Combine optimal policy of M with previous strategy using 

fictitious play updating rule 



Third new algorithm 

•  Using value iteration variant as the inner loop 
•  Again we use MDP solving as inner loop and fictitious 

play as outer loop 
•  Same as previous algorithm except different inner loop 

•  New inner loop: 
–  Value iteration, but make sure initializations are pessimistic 

(underestimates of optimal values in the MDP) 
–  Pessimistic initialization can be accomplished by matrix 

inversion using outer loop strategy as initialization in 
induced MDP 



Summary 
•  Domain-independent techniques 
•  Automated lossless abstraction  

–  Solved Rhode Island Hold’em exactly 
•  3.1 billion nodes in game tree, biggest solved before had 140,000 

•  Automated lossy abstraction 
–  k-means clustering & integer programming 
–  Potential-aware 

•  Novel scalable equilibrium-finding algorithms 
–  Scalable EGT & iterated smoothing 

•  DBs, data structures, … 
•  Won AAAI-08 Computer Poker Competition Limit Texas Hold’em 

bankroll category (and did best in bankroll in No-Limit also) 
–  Competitive with world’s best professional poker players? 

•  First algorithms for solving large stochastic games with >2 players 
(3-player jam/fold poker tournaments) 



Current & future research 


