Sequential imperfect-information games Case study: Poker

Tuomas Sandholm

Carnegie Mellon University
Computer Science Department

Sequential imperfect information games

- Players face uncertainty about the state of the world
- Most real-world games are like this
 - A robot facing adversaries in an uncertain, stochastic environment
 - Almost any card game in which the other players' cards are hidden
 - Almost any economic situation in which the other participants possess private information (e.g. valuations, quality information)
 - Negotiation
 - Multi-stage auctions (e.g., English)
 - Sequential auctions of multiple items

– ...

- This class of games presents several challenges for AI
 - Imperfect information
 - Risk assessment and management
 - Speculation and counter-speculation
- Techniques for solving sequential complete-information games (like chess) don't apply
- Our techniques are domain-independent

Poker

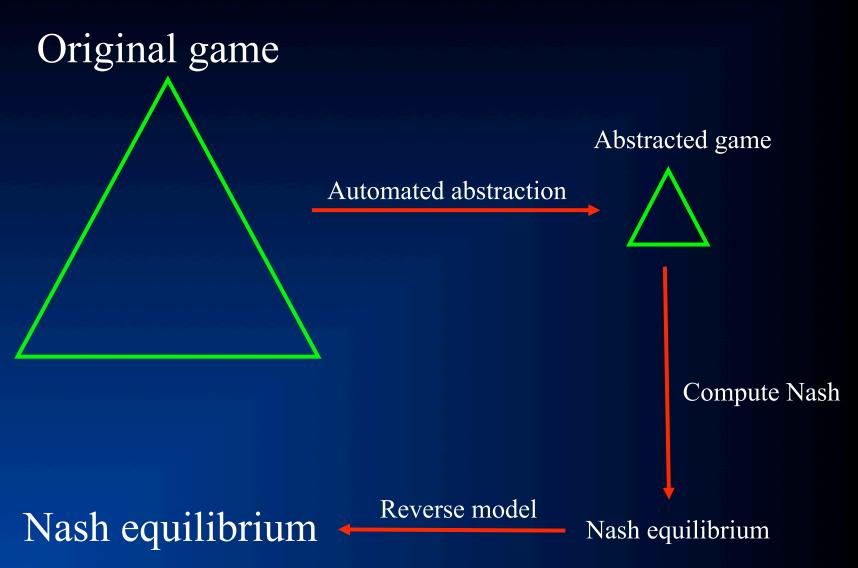
- Recognized challenge problem in AI
 - Hidden information (other players' cards)
 - Uncertainty about future events
 - Deceptive strategies needed in a good player
- Very large game trees
- Texas Hold'em: most popular variant

Finding equilibria

- In 2-person 0-sum games,
 - Nash equilibria are minimax equilibria => no equilibrium selection problem
 - If opponent plays a non-equilibrium strategy, that only helps me
- Any finite sequential game (satisfying perfect recall) can be converted into a matrix game
 - Exponential blowup in #strategies (even in reduced normal form)
- Sequence form: More compact representation based on sequences of moves rather than pure strategies [Romanovskii 62, Koller & Megiddo 92, von Stengel 96]
 - 2-person 0-sum games with perfect recall can be solved in time polynomial in size of game tree using LP
 - Cannot solve Rhode Island Hold'em (3.1 billion nodes) or Texas Hold'em (10¹⁸ nodes)

Our approach [Gilpin & Sandholm EC'06, JACM'07]

Now used by all competitive Texas Hold'em programs



Outline

- Automated abstraction
 - Lossless
 - Lossy
- New equilibrium-finding algorithms
- Stochastic games with >2 players, e.g., poker tournaments
- Current & future research

Lossless abstraction

[Gilpin & Sandholm EC'06, JACM'07]

Information filters

- Observation: We can make games smaller by filtering the information a player receives
- Instead of observing a specific signal exactly, a player instead observes a filtered set of signals
 - E.g. receiving signal $\{A \spadesuit, A \spadesuit, A \heartsuit, A \diamondsuit\}$ instead of $A \heartsuit$

Signal tree

• Each edge corresponds to the revelation of some signal by nature to at least one player

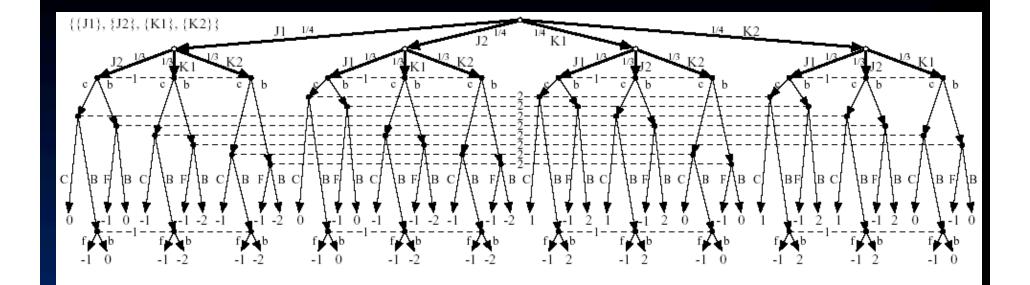
- Our abstraction algorithms operate on it
 - Don't load full game into memory

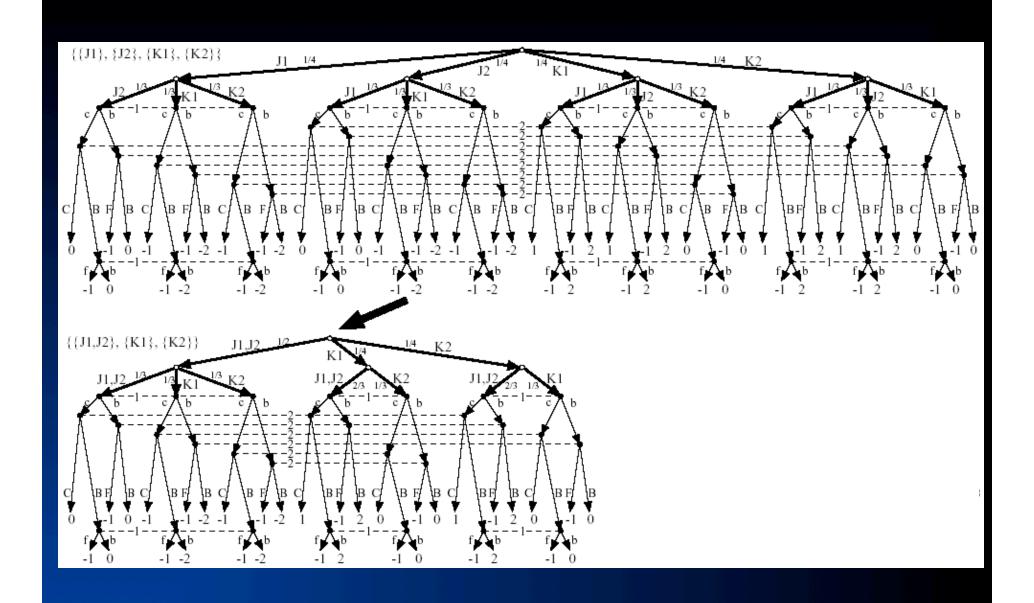
Isomorphic relation

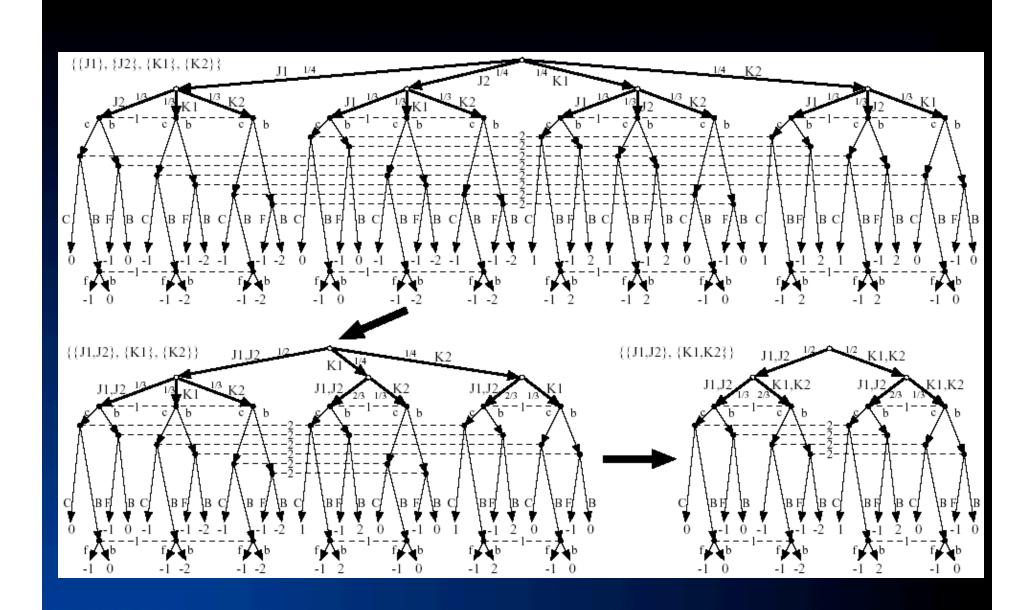
- Captures the notion of strategic symmetry between nodes
- Defined recursively:
 - Two leaves in signal tree are isomorphic if for each action history in the game, the payoff vectors (one payoff per player) are the same
 - Two internal nodes in signal tree are isomorphic if they are siblings and there is a bijection between their children such that only ordered game isomorphic nodes are matched
- We compute this relationship for all nodes using a DP plus custom perfect matching in a bipartite graph
 - Answer is stored

Abstraction transformation

- Merges two isomorphic nodes
- Theorem. If a strategy profile is a Nash equilibrium in the abstracted (smaller) game, then its interpretation in the original game is a Nash equilibrium
- Assumptions
 - Observable player actions
 - Players' utility functions rank the signals in the same order







GameShrink algorithm

- Bottom-up pass: Run DP to mark isomorphic pairs of nodes in signal tree
- Top-down pass: Starting from top of signal tree, perform the transformation where applicable
- Theorem. Conducts all these transformations
 - $\tilde{O}(n^2)$, where n is #nodes in signal tree
 - Usually highly *sublinear* in game tree size
- One approximation algorithm: instead of requiring perfect matching, require a matching with a penalty below threshold

Algorithmic techniques for making GameShrink faster

- Union-Find data structure for efficient representation of the information filter (unioning finer signals into coarser signals)
 - Linear memory and almost linear time
- Eliminate some perfect matching computations using easy-to-check necessary conditions
 - Compact histogram databases for storing win/loss frequencies to speed up the checks

Solving Rhode Island Hold'em poker

- AI challenge problem [Shi & Littman 01]
 - 3.1 billion nodes in game tree
- Without abstraction, LP has 91,224,226 rows and columns => unsolvable
- GameShrink runs in one second
- After that, LP has 1,237,238 rows and columns
- Solved the LP
 - CPLEX barrier method took 8 days & 25 GB RAM
- Exact Nash equilibrium
- Largest incomplete-info (poker) game solved to date by over 4 orders of magnitude

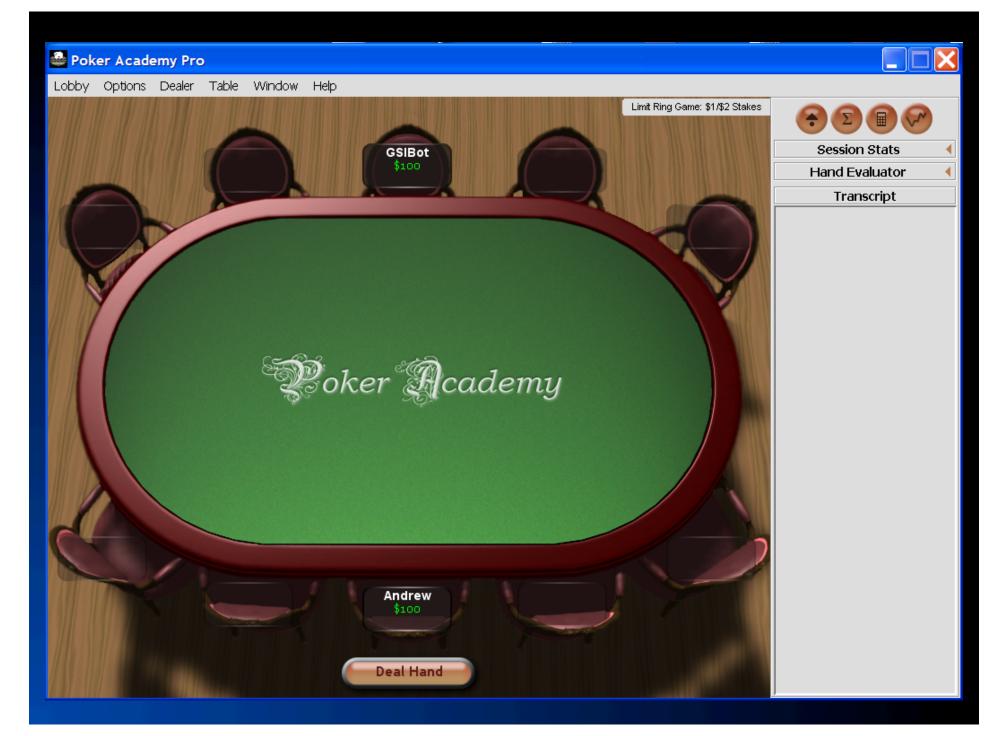
Lossy abstraction

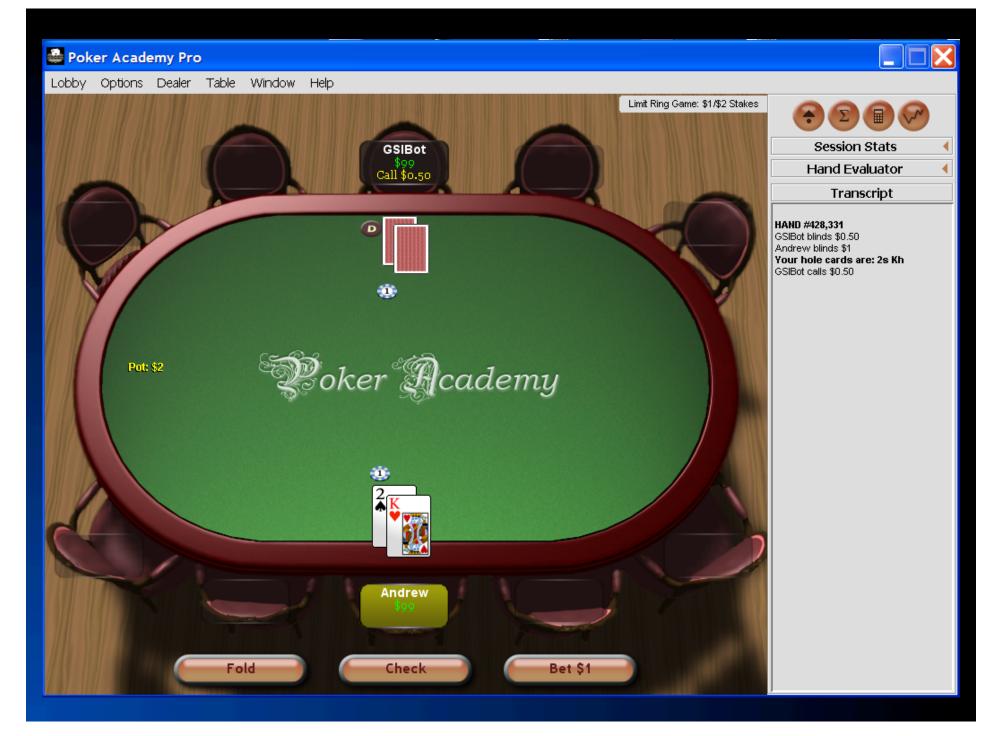
Texas Hold'em poker

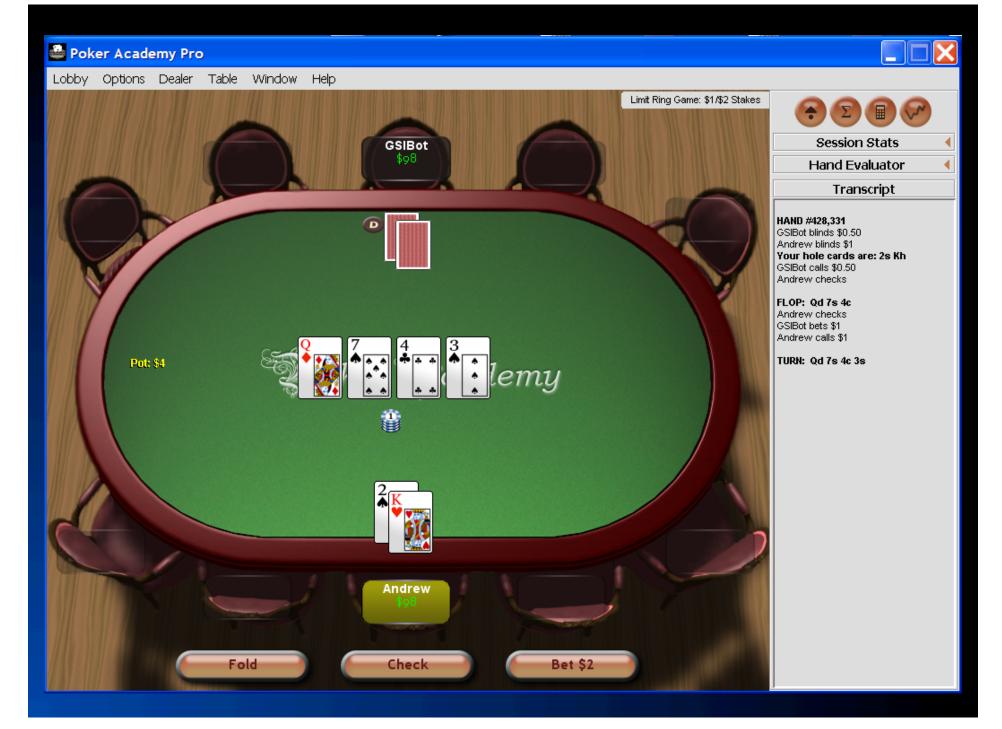
Nature deals 2 cards to each player Round of betting Nature deals 3 shared cards Round of betting Nature deals 1 shared card Round of betting Nature deals 1 shared card Round of betting

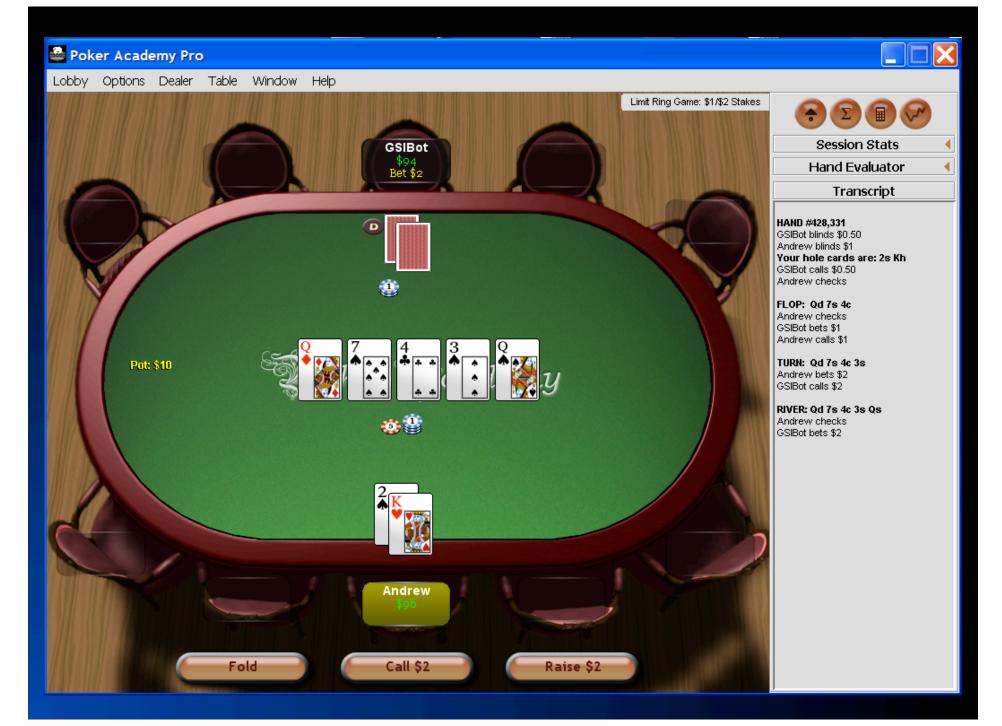
 2-player Limit Texas Hold'em has ~10¹⁸ leaves in game tree

- Losslessly abstracted game too big to solve
 - => abstract more
 - $\Rightarrow lossy$









GS1

1/2005 - 1/2006

GS1 [Gilpin & Sandholm AAAI'06]

- Our first program for 2-person Limit Texas Hold'em
- 1/2005 1/2006
- First Texas Hold'em program to use automated abstraction
 - Lossy version of Gameshrink

GS1

- We split the 4 betting rounds into two phases
 - Phase I (first 2 rounds) solved offline using approximate version of GameShrink followed by LP
 - Assuming rollout
 - Phase II (last 2 rounds):
 - abstractions computed offline
 - betting history doesn't matter & suit isomorphisms
 - real-time equilibrium computation using anytime LP
 - updated hand probabilities from Phase I equilibrium (using betting histories and community card history):

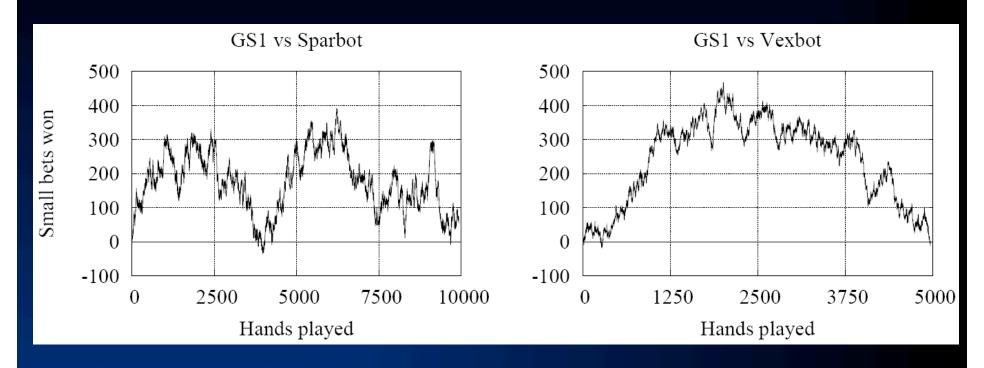
$$\Pr[\theta_i \mid h, s_i] = \frac{\Pr[h \mid \theta_i, s_i] \Pr[\theta_i]}{\Pr[h \mid s_i]} = \frac{\Pr[h \mid \theta_i, s_i] \Pr[\theta_i]}{\sum_{\theta_i' \in \Theta} \Pr[h \mid \theta_i', s_i]}$$

- s_i is player i's strategy, h is an information set

Some additional techniques used

- Precompute several databases
- Conditional choice of primal vs. dual simplex for real-time equilibrium computation
 - Achieve anytime capability for the player that is us
- Dealing with running off the equilibrium path

GS1 results



- *Sparbot*: Game-theory-based player, manual abstraction
- Vexbot: Opponent modeling, miximax search with statistical sampling
- *GS1* performs well, despite using very little domain-knowledge and no adaptive techniques
 - No statistical significance

GS2 [Gilpin & Sandholm AAMAS'07]

- 2/2006-7/2006
- Original version of *GameShrink* is "greedy" when used as an approximation algorithm => lopsided abstractions
- GS2 instead finds abstraction via clustering & IP
 - Round by round starting from round 1
- Other ideas in GS2:
 - Overlapping phases so Phase I would be less myopic
 - Phase I = round 1, 2, and 3; Phase II = rounds 3 and 4
 - Instead of assuming rollout at leaves of Phase I (as was done in *SparBot* and *GS1*), use statistics to get a more accurate estimate of how play will go
 - Statistics from 100,000's hands of *SparBot* in self-play

GS2

2/2006 — 7/2006 [Gilpin & Sandholm AAMAS'07]

Optimized approximate abstractions

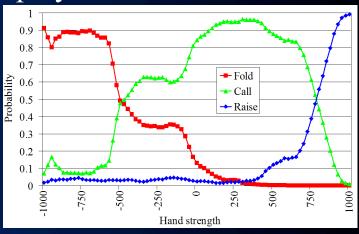
- Original version of *GameShrink* is "greedy" when used as an approximation algorithm => lopsided abstractions
- GS2 instead finds an abstraction via clustering & IP
- For round 1 in signal tree, use 1D k-means clustering
 - Similarity metric is win probability (ties count as half a win)
- For each *round* 2..3 of signal tree:
 - For each group i of hands (children of a parent at round 1):
 - use 1D k-means clustering to split group i into k_i abstract "states"
 - for each value of k_i , compute expected error (considering hand probs)
 - IP decides how many children different parents (from round 1) may have: Decide k_i 's to minimize total expected error, subject to $\sum_i k_i \le K_{round}$
 - K_{round} is set based on acceptable size of abstracted game
 - Solving this IP is fast in practice

Phase I (first three rounds)

- Optimized abstraction
 - Round 1
 - There are 1,326 hands, of which 169 are strategically different
 - We allowed 15 abstract states
 - Round 2
 - There are 25,989,600 distinct possible hands
 - GameShrink (in lossless mode for Phase I) determined there are $\sim 10^6$ strategically different hands
 - Allowed 225 abstract states
 - Round 3
 - There are 1,221,511,200 distinct possible hands
 - Allowed 900 abstract states
- Optimizing the approximate abstraction took 3 days on 4 CPUs
- LP took 7 days and 80 GB using CPLEX's barrier method

Mitigating effect of round-based abstraction (i.e., having 2 phases)

- For leaves of Phase I, GS1 & SparBot assumed rollout
- Can do better by estimating the actions from later in the game (betting) using statistics
- For each possible hand strength and in each possible betting situation, we stored the probability of each possible action
 - Mine history of how betting has gone in later rounds from 100,000's of hands that SparBot played
 - − E.g. of betting in 4th round
 - Player 1 has bet. Player 2's turn



Phase II (rounds 3 and 4)

- Abstraction computed using the same optimized abstraction algorithm as in Phase I
- Equilibrium solved in real time (as in *GS1*)
 - Beliefs for the beginning of Phase II determined using Bayes rule based on observations and the computed equilibrium strategies from Phase I

Precompute several databases

- **db5**: possible wins and losses (for a single player) for every combination of two hole cards and three community cards (25,989,600 entries)
 - Used by GameShrink for quickly comparing the similarity of two hands
- **db223**: possible wins and losses (for both players) for every combination of pairs of two hole cards and three community cards based on a roll-out of the remaining cards (14,047,378,800 entries)
 - Used for computing payoffs of the Phase I game to speed up the LP creation
- handval: concise encoding of a 7-card hand rank used for fast comparisons of hands (133,784,560 entries)
 - Used in several places, including in the construction of db5 and db223
- Colexicographical ordering used to compute indices into the databases allowing for very fast lookups

GS2 experiments

Opponent	Series won by	Win rate (small bets per hand)	
	GS2		
GS1	38 of 50	+0.031	
	p=.00031		
Sparbot	28 of 50	+0.0043	
	p=.48		
Vexbot	32 of 50	-0.0062	
	p=.065		

GS3

8/2006 – 3/2007
[Gilpin, Sandholm & Sørensen AAAI'07]

GS4 is similar

Entire game solved holistically

- We no longer break game into phases
 - Because our new equilibrium-finding algorithms can solve games of the size that stem from reasonably fine-grained abstractions of the entire game

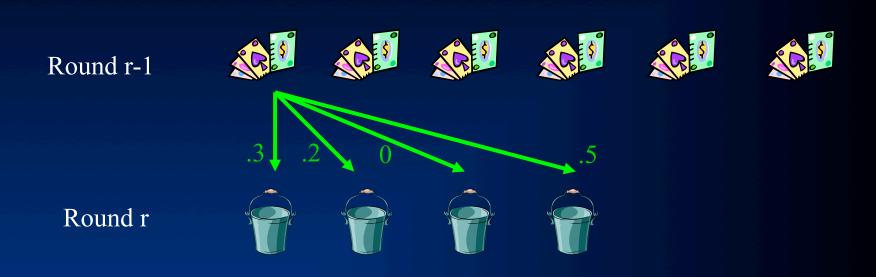
• => better strategies & no need for real-time computation

Potential-aware automated abstraction

- All prior abstraction algorithms (including ours) had myopic probability of winning as the similarity metric
 - Does not address *potential*, e.g., hands like flush draws where although the probability of winning is small, the payoff could be high
- Potential not only positive or negative, but also "multidimensional"
- GS3's abstraction algorithm takes potential into account...

- Idea: similarity metric between hands at round R should be based on the vector of probabilities of transitions to abstracted states at round R+1
 - $-E.g., L_1$ norm
- In the last round, the similarity metric is simply probability of winning (assuming rollout)
- This enables a bottom

Bottom-up pass to determine abstraction for round 1



- Clustering using L₁ norm
 - Predetermined number of clusters, depending on size of abstraction we are shooting for
- In the last (4th) round, there is no more potential => we use probability of winning (assuming rollout) as similarity metric

Determining abstraction for round 2

- For each 1st-round bucket i:
 - Make a bottom-up pass to determine 3rd-round buckets,
 considering only hands compatible with i
 - For k_i (M) $\{1, 2, ..., max\}$
 - Cluster the 2nd-round hands into k_i clusters
 - based on each hand's histogram over 3rd-round buckets
- IP to decide how many children each 1st-round bucket may have, subject to $\sum_i k_i \le K_2$
 - Error metric for each bucket is the sum of L₂ distances of the hands from the bucket's centroid
 - Total error to minimize is the sum of the buckets' errors
 - weighted by the probability of reaching the bucket

Determining abstraction for round 3

• Done analogously to how we did round 2

Determining abstraction for round 4

• Done analogously, except that now there is no potential left, so clustering is done based on probability of winning (assuming rollout)

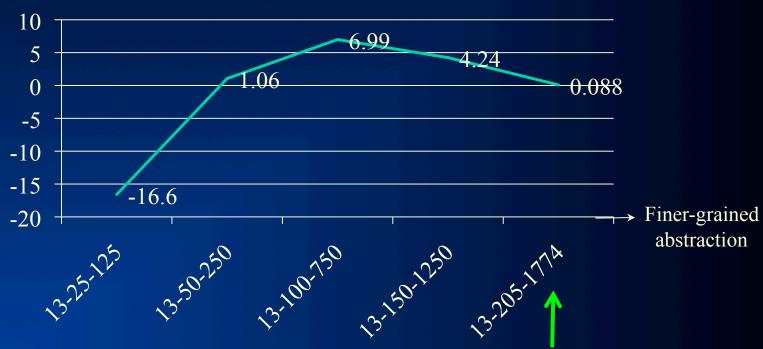
Now we have finished the abstraction!

Potential-aware vs win-probability-based abstraction

[Gilpin & Sandholm AAAI-08]

- Both use clustering and IP
- Experiment conducted on Heads-Up Rhode Island Hold'em
 - Abstracted game solved exactly

Winnings to potential-aware (small bets per hand)



13 buckets in first round is lossless

Potential-aware becomes lossless,

win-probability-based is as good as it gets, never lossless

Potential-aware vs win-probability-based abstraction

[Gilpin & Sandholm AAAI-08 & new]

EB pa	ayoff	EB^2 p	oayoff	PA 1	payoff
versus EB ²	versus PA	versus EB	versus PA	versus EB	versus EB ²
0.1490	16.6223	-0.1490	17.0938	-16.6223	-17.0938
-0.1272	-1.0627	0.1272	-0.5200	1.0627	0.5200
		'	'	1	1
0.2340	-6.9880	-0.2340	-7.1448	6.9880	7.1448
		'	1	ı	ı
0.1813	-5.5707	-0.1813	-5.6879	5.5707	5.6879
		'	ı	I	I
0.0000	-0.0877	0.0000	-0.0877	0.0877	0.0877
	0.1490 -0.1272 0.2340 0.1813	0.1490 16.6223 -0.1272 -1.0627 0.2340 -6.9880 0.1813 -5.5707	versus EB ² versus PA versus EB 0.1490 16.6223 -0.1490 -0.1272 -1.0627 0.1272 0.2340 -6.9880 -0.2340 0.1813 -5.5707 -0.1813	versus EB ² versus PA versus EB versus PA 0.1490 16.6223 -0.1490 17.0938 -0.1272 -1.0627 0.1272 -0.5200 0.2340 -6.9880 -0.2340 -7.1448 0.1813 -5.5707 -0.1813 -5.6879	versus EB² versus PA versus EB versus PA versus EB 0.1490 16.6223 -0.1490 17.0938 -16.6223 -0.1272 -1.0627 0.1272 -0.5200 1.0627 0.2340 -6.9880 -0.2340 -7.1448 6.9880 0.1813 -5.5707 -0.1813 -5.6879 5.5707

13 buckets in first round is lossless

Potential-aware becomes lossless, win-probability-based is as good as it gets, *never* lossless

Equilibrium-finding algorithms

Solving the (abstracted) game

Now we move from discussing general-sum n-player games to discussing 2-player 0-sum games

Scalability of (near-)equilibrium finding in 2-person 0-sum games Manual approaches can only solve games with a handful of nodes

(Un)scalability of LP solvers

- Rhode Island Hold'em LP
 - 91,000,000 rows and columns
 - After *GameShrink*, 1,200,000 rows and columns, and 50,000,000 non-zeros
 - CPLEX's barrier method uses 25 GB RAM and 8 days
- Texas Hold'em poker much larger
 - => would need to use extremely coarse abstraction
- Instead of LP, can we solve the equilibrium-finding problem in some other way?

Excessive gap technique (EGT)

- LP solvers only scale to $\sim 10^7$ nodes. Can we do better than use LP?
- Usually, gradient-based algorithms have poor convergence, but...
- **Theorem** [Nesterov 05]. There is a gradient-based algorithm (for a class of *minmax problems*) that finds an ε -equilibrium in $O(1/\varepsilon)$ iterations
- In general, work per iteration is as hard as solving the original problem, but...
- Can make each iteration faster by considering problem structure:
- Theorem [Hoda et al. 06]. In sequential games, each iteration can be solved in time linear in the size of the game tree

Scalable EGT [Gilpin, Hoda, Peña, Sandholm WINE'07]

Memory saving in poker & many other games

- Main space bottleneck is storing the game's payoff matrix A
- **Definition.** Kronecker product

$$X \in \mathbb{R}^{m \times n}, Y \in \mathbb{R}^{p \times q}, \qquad X \otimes Y = \begin{bmatrix} x_{11}Y & \cdots & x_{1n}Y \\ \vdots & \ddots & \vdots \\ x_{m1}Y & \cdots & x_{mn}Y \end{bmatrix} \in \mathbb{R}^{mp \times nq}$$

• In Rhode Island Hold'em:

$$A = \begin{bmatrix} A_1 & & \\ & A_2 & \\ & & A_3 \end{bmatrix}$$

- F_r corresponds to sequences of moves in round r that end in a fold
- S corresponds to sequences of moves in round 3 that end in a showdown
- B_r encodes card buckets in round r
- W encodes win/loss/draw probabilities of the buckets

Memory usage

Instance	CPLEX barrier	CPLEX simplex	Our method
Losslessly abstracted Rhode Island Hold'em	25.2 GB	>3.45 GB	0.15 GB
Lossily abstracted Texas Hold'em	>458 GB	>458 GB	2.49 GB

Memory usage

Instance	CPLEX barrier	CPLEX simplex	Our method
10k	0.082 GB	>0.051 GB	0.012 GB
160k	2.25 GB	>0.664 GB	0.035 GB
Losslessly abstracted RI Hold'em	25.2 GB	>3.45 GB	0.15 GB
Lossily abstracted TX Hold'em	>458 GB	>458 GB	2.49 GB

Scalable EGT [Gilpin, Hoda, Peña, Sandholm WINE'07] Speed

- Fewer iterations
 - With Euclidean prox fn, gap was reduced by an order of magnitude more (at given time allocation) compared to entropy-based prox fn
 - Heuristics
 - Less conservative shrinking of \mathbb{W}_1 and \mathbb{W}_2
 - Sometimes need to reduce (halve) t
 - Balancing W₁ and W₂ periodically
 - Often allows reduction in the values
 - Gap was reduced by an order of magnitude (for given time allocation)
- Faster iterations
 - Parallelization in each of the 3 matrix-vector products in each iteration => near-linear speedup

Iterated smoothing [Gilpin, Peña & Sandholm AAAI-08]

- Input: Game and $\varepsilon_{\text{target}}$
- Initialize strategies x and y arbitrarily
- ϵ ϵ ϵ ϵ ϵ ϵ
- repeat
 - ε \forall gap(x, y) / e
 - (x, y) SmoothedGradientDescent(f, ε, x, y)
 - until gap $(x, y) < \varepsilon_{\text{target}}$

$$O(1/\epsilon)$$
 $O(\log(1/\epsilon))$

Solving GS3's four-round model

[Gilpin, Sandholm & Sørensen AAAI'07]

- Computed abstraction with
 - 20 buckets in round 1
 - 800 buckets in round 2
 - 4,800 buckets in round 3
 - 28,800 buckets in round 4
- Our version of excessive gap technique used 30 GB RAM
 - (Simply representing as an LP would require 32 TB)
 - Outputs new, improved solution every 2.5 days
 - 4 1.65GHz CPUs: 6 months to gap 0.028 small bets per hand

Results (for GS4)

- AAAI-08 Computer Poker Competition
 - GS4 won the Limit Texas Hold'em bankroll category
 - Played 4-4 in the pairwise comparisons. 4th of 9 in elimination category
 - Tartanian did the best in terms of bankroll in No-Limit Texas Hold'em
 - 3rd out of 4 in elimination category

Comparison to prior poker AI

- Rule-based
 - Limited success in even small poker games
- Simulation/Learning
 - Do not take multi-agent aspect into account
- Game-theoretic
 - Small games
 - Manual abstraction + LP for equilibrium finding [Billings et al. IJCAI-03]
 - Ours
 - Automated abstraction
 - Custom solver for finding Nash equilibrium
 - Domain independent

>2 players

(Actually, our abstraction algorithms, presented earlier in this talk, apply to >2 players)

Games with >2 players

- Matrix games:
 - 2-player zero-sum: solvable in polytime
 - ->2 players zero-sum: PPAD-complete [Chen & Deng, 2006]
 - No previously known algorithms scale beyond tiny games with >2 players
- Stochastic games (undiscounted):
 - 2-player zero-sum: Nash equilibria exist
 - 3-player zero-sum: Existence of Nash equilibria still open

Poker tournaments

- Players buy in with cash (e.g., \$10) and are given chips (e.g., 1500) that have no monetary value
- Lose all you chips => eliminated from tournament
- Payoffs depend on finishing order (e.g., \$50 for 1st, \$30 for 2nd, \$20 for 3rd)
- Computational issues:
 - − >2 players
 - Tournaments are stochastic games (potentially infinite duration): each game state is a vector of stack sizes (and also encodes who has the button)

Jam/fold strategies

- Jam/fold strategy: in the first betting round, go all-in or fold
- In 2-player poker tournaments, when blinds become high compared to stacks, provably near-optimal to play jam/fold strategies [Miltersen & Sørensen 2007]
- Solving a 3-player tournament [Ganzfried & Sandholm AAMAS-08]
 - Compute an approximate equilibrium in jam/fold strategies
 - Strategy spaces 2¹⁶⁹, 2 W 2¹⁶⁹, 3 W 2¹⁶⁹
 - Algorithm combines
 - an extension of fictitious play to imperfect-information games
 - with a variant of value iteration
 - Our solution challenges *Independent Chip Model (ICM)* accepted by poker community
 - Unlike in 2-player case, tournament and cash game strategies differ substantially

Our first algorithm

- Initialize payoffs for all game states using heuristic from poker community (ICM)
- Repeat until "outer loop" converges
 - "Inner loop":
 - Assuming current payoffs, compute an approximate equilibrium at each state using fictitious play
 - Can be done efficiently by iterating over each player's information sets
 - "Outer loop":
 - Update the values with the values obtained by new strategy profile
 - Similar to value iteration in MDPs

Ex-post check

- Our algorithm is not guaranteed to converge, and can converge to a non-equilibrium (we constructed example)
- We developed an *ex-post* check to verify how much any player could gain by deviating [Ganzfried & Sandholm IJCAI-09]
 - Constructs an undiscounted MDP from the strategy profile,
 and solves it using variant of policy iteration
 - Showed that no player could gain more than 0.1% of highest possible payoff by deviating from our profile

New algorithms [Ganzfried & Sandholm IJCAI-09]

- Developed 3 new algorithms for solving multiplayer stochastic games of imperfect information
 - Unlike first algorithm, if these algorithms converge, they converge to an equilibrium
 - First known algorithms with this guarantee
 - They also perform competitively with the first algorithm
- The algorithms combine fictitious play variant from first algorithm with techniques for solving undiscounted MDPs (i.e., maximizing expected total reward)

Best one of the new algorithms

- Initialize payoffs using ICM as before
- Repeat until "outer loop" converges
 - "Inner loop":
 - Assuming current payoffs, compute an approximate equilibrium at each state using our variant of fictitious play as before
 - "Outer loop": update the values with the values obtained by new strategy profile
 S_t using a modified version of policy iteration:
 - Create the MDP M induced by others' strategies in S_t (and initialize using own strategy in S_t):
 - Run modified policy iteration on M
 - In the matrix inversion step, always choose the minimal solution
 - If there are multiple optimal actions at a state, prefer the action chosen last period if possible

Second new algorithm

- Interchanging roles of fictitious play and policy iteration:
 - Policy iteration used as inner loop to compute best response
 - Fictitious play used as outer loop to combine BR with old strategy
- Initialize strategies using ICM
- Inner loop:
 - Create MDP M induced from strategy profile
 - Solve M using policy iteration variant (from previous slide)
- Outer loop:
 - Combine optimal policy of M with previous strategy using fictitious play updating rule

Third new algorithm

- Using value iteration variant as the inner loop
- Again we use MDP solving as inner loop and fictitious play as outer loop
- Same as previous algorithm except different inner loop
- New inner loop:
 - Value iteration, but make sure initializations are pessimistic (underestimates of optimal values in the MDP)
 - Pessimistic initialization can be accomplished by matrix inversion using outer loop strategy as initialization in induced MDP

Summary

- Domain-independent techniques
- Automated lossless abstraction
 - Solved Rhode Island Hold'em exactly
 - 3.1 billion nodes in game tree, biggest solved before had 140,000
- Automated lossy abstraction
 - k-means clustering & integer programming
 - Potential-aware
- Novel scalable equilibrium-finding algorithms
 - Scalable EGT & iterated smoothing
- DBs, data structures, ...
- Won AAAI-08 Computer Poker Competition Limit Texas Hold'em bankroll category (and did best in bankroll in No-Limit also)
 - Competitive with world's best professional poker players?
- First algorithms for solving large stochastic games with >2 players (3-player jam/fold poker tournaments)

Current & future research

Abstraction

- Provable approximation (ex ante / ex post)
- Action abstraction (requires reverse model) -> Tartanian for No-Limit Texas
 Hold'em [Gilpin, Sandholm & Sørensen AAMAS-08]
- Other types of abstraction
- Equilibrium-finding algorithms with even better scalability
- Other solution concepts: sequential equilibrium, coalitional deviations,...
- Even larger #players (cash game & tournament)
- Opponent modeling
- Actions beyond the ones discussed in the rules:
 - Explicit information-revelation actions
 - Timing, ...
- Trying these techniques in other games